--- src/include/sound.h Mon Sep 16 04:16:02 2002 +++ src/include/sound.h Mon Oct 7 22:51:37 2002 @@ -156,6 +156,13 @@ void (* DMA_set_blocksize)(int, int); /* **CRISK** */ /* + * OPL Functions + */ + int (* FM_driver_open)(int, int, int); + void (* FM_driver_close)(void); + size_t (* OPL_do_write)(void*, size_t); + + /* * Miscellaneous Functions */ int (* set_speed)(__u16 speed, __u8 stereo); --- src/dosext/sound/sound.c Thu Sep 26 20:35:41 2002 +++ src/dosext/sound/sound.c Mon Oct 7 23:13:35 2002 @@ -81,6 +81,7 @@ #include "dma.h" #include "timers.h" #include "sound.h" +#include "fmopl.h" #include "pic.h" #include "bitops.h" #include @@ -91,6 +92,7 @@ #include #include #include +#include /* Internal Functions */ @@ -146,8 +148,6 @@ void sb_do_reset (Bit8u value); -void sb_update_timers (void); - static void sb_activate_irq (int type); static void sb_deactivate_irq (int type); static void sb_check_complete (void); @@ -157,6 +157,17 @@ Bit8u sb_get_mixer_DMA_mask (void); Bit8u sb_get_mixer_IRQ_status (void); +void OPL_timer(int channel, double interv_Sec); +void OPL_update(int param, int min_interval); +void OPL_check_timer(void); +static long OPL_expire[2]; +#define FM_SAMPLE_SIZE 4 +#define FM_FREQ 44100 +#define FM_EXTRA_BUF 256 +#define FM_BUF_LEN (FM_FREQ * FM_SAMPLE_SIZE / HZ + FM_EXTRA_BUF) +static INT16 fm_buf[FM_BUF_LEN]; +static int fm_opened = 0; + static int dsp_block_size; static int dma_pending = 0; static int mixer_emu_regs[255]; @@ -528,7 +539,7 @@ /* - * DANG_BEGIN_FUNCTION adlib_io_read + * DANG_BEGIN_FUNCTION fm_io_read * * arguments: * port - The I/O port being read from. @@ -543,62 +554,89 @@ * DANG_END_FUNCTION */ -static Bit8u adlib_io_read(ioport_t port) +Bit8u fm_io_read(ioport_t port) { - Bit8u result = 0xFF; - - /* Adlib Base Port is 0x388 */ - /* Adv. Adlib Base Port is 0x38A */ - - switch (port){ - case 0x388: - S_printf ("Adlib: Read from Adlib port (%#x)\n", port); - result = fm_io_read (ADLIB_STATUS); - break; - - case 0x38A: - S_printf ("Adv_Adlib: Read from Adlib Advanced port (%#x)\n", port); - result = fm_io_read (ADV_ADLIB_STATUS); - break; - - default: - S_printf("%#x is an unhandled read port\n", port); - }; - - if (debug_level('S') >= 2) { - S_printf ("Adlib: Read from port 0x%x returns 0x%x\n", port, result); +Bit8u val; +#define ADLIB_BASE 0x388 + OPL_check_timer(); + val = YM3812Read(0, port - ADLIB_BASE); + S_printf("OPL: Read 0x%x from port 0x%x\n", val, port); + return val; +} + +void OPL_check_timer(void) +{ +unsigned long long cur_time; +int i; + cur_time = GETusTIME(0); + for(i = 0; i < 2; i++) { + if (cur_time > OPL_expire[i]) { + S_printf("OPL: timer %i expired\n", i); + YM3812TimerOver(0, i); + } } - - return result; } -Bit8u fm_io_read (ioport_t port) -{ - /* extern struct adlib_info_t adlib_info; - For reference - AM */ - Bit8u retval; - - switch (port){ - case ADLIB_STATUS: - /* DANG_FIXTHIS Adlib status reads are unimplemented */ - /* retval = 31; - according to sblast.doc ? */ - retval = 0; /* - according to adlib_sb.txt */ - if ( (adlib_timers[0].expired == 1) - && (adlib_timers[0].enabled == 1) ) { - retval |= (64 | 128); - } - if ( (adlib_timers[1].expired == 1) - && (adlib_timers[1].enabled == 1) ) { - retval |= (32 | 128) ; - } - S_printf ("Adlib: Status read - %d\n", retval); - return retval; +static void FM_do_write(int reset) { +#define FM_IDLE_THRESHOLD (65536 * 4 / FM_BUF_LEN) +static long long old_time = -1; +static int write_idx = 0, idle_cnt = 0, data_len = 0; +long long time; +int estim_len, wr_len; + time = GETusTIME(0); + if (old_time == -1) + old_time = GETusTIME(0); + estim_len = (time - old_time) * FM_FREQ * FM_SAMPLE_SIZE / 1000000; + if (estim_len < 0) { + error("Time goes back: time=%lli old_time=%lli\n", time, old_time); + return; + } + if (!reset && estim_len + FM_EXTRA_BUF < write_idx) + return; + if (write_idx > data_len) { + error("write_idx=%i data_len=%i\n", write_idx, data_len); + write_idx = data_len; + } + if (write_idx == data_len || reset) { + write_idx = 0; + old_time = time; + data_len = MIN((estim_len / FM_SAMPLE_SIZE) * FM_SAMPLE_SIZE + FM_EXTRA_BUF, FM_BUF_LEN); + assert(data_len % FM_SAMPLE_SIZE == 0); + YM3812UpdateOne(0, fm_buf, data_len); + sb_is_running |= FM_TIMER_RUN; + if (reset) { + idle_cnt = 0; + } else { + if (idle_cnt++ > FM_IDLE_THRESHOLD) { + sb_is_running &= ~FM_TIMER_RUN; + old_time = -1; + if (fm_opened > 0) { + SB_driver.FM_driver_close(); + fm_opened = 0; + } + return; + } + } + } + wr_len = data_len - write_idx; + assert(wr_len % FM_SAMPLE_SIZE == 0); + S_printf("OPL: Writing %d bytes\n", wr_len); + write_idx += SB_driver.OPL_do_write(fm_buf + write_idx, wr_len); +} - case ADV_ADLIB_STATUS: - /* DANG_FIXTHIS Advanced adlib reads are unimplemented */ - return 31; - }; - - return 0; +void OPL_update(int param, int min_interval) +{ + if (fm_opened < 0) + return; + if (fm_opened == 0) { + fm_opened = SB_driver.FM_driver_open(FM_FREQ, OPL_SAMPLE_BITS, (FM_SAMPLE_SIZE * 8 / OPL_SAMPLE_BITS) - 1); + if (!fm_opened) { + fm_opened = -1; + return; + } + } + S_printf("OPL: update requested\n"); + FM_do_write(1); } /* @@ -1598,7 +1636,7 @@ memset (silence_data, 0x80, SB_dsp.length); if (SB_driver.play_buffer != NULL) { - (*SB_driver.play_buffer)(silence_data, SB_dsp.length); + SB_driver.play_buffer(silence_data, SB_dsp.length); SB_dsp.empty_state = IRQ_AT_EMPTY; } else { @@ -1608,111 +1646,14 @@ } } -void adlib_io_write(ioport_t port, Bit8u value) -{ - /* Base Port for Adlib is 0x388 */ - /* Base Port for Adv. Adlib is 0x38a */ - - switch (port) { - case 0x388: /* Adlib Register Port */ - S_printf("Adlib: Write 0x%x to Register Port\n", value); - fm_io_write(ADLIB_REGISTER, value); - break; - case 0x389: /* Adlib Data Port */ - S_printf("Adlib: Write 0x%x to Data Port\n", value); - fm_io_write(ADLIB_DATA, value); - break; - - case 0x38A: /* Adv. Adlib Register Port */ - S_printf("Adv_Adlib: Write 0x%x to Register Port\n", value); - fm_io_write(ADV_ADLIB_REGISTER, value); - break; - case 0x38B: /* Adv. Adlib Data Port */ - S_printf("Adv_Adlib: Write 0x%x to Data Port\n", value); - fm_io_write(ADV_ADLIB_DATA, value); - break; - }; -} - void fm_io_write(ioport_t port, Bit8u value) { - switch (port) { - case ADLIB_REGISTER: - adlib_info.reg = value; - - break; - - case ADLIB_DATA: - switch (adlib_info.reg) { - case 0x01: /* Test LSI/Enable Waveform control */ - /* DANG_FIXTHIS Adlib Waveform tests are unimplemented */ - break; - case 0x02: /* Timer 1 data */ - S_printf ("Adlib: Timer 1 register set to %d\n", value); - adlib_timers[0].reg = value; - break; - case 0x03: /* Timer 2 data */ - S_printf ("Adlib: Timer 2 register set to %d\n", value); - adlib_timers[1].reg = value; - break; - case 0x04: /* Timer control flags */ - if (value & 0x80) { - S_printf ("Adlib: Resetting both timers\n"); - - adlib_timers[0].enabled = 0; - adlib_timers[1].enabled = 0; - sb_is_running &= (~FM_TIMER_RUN); - - adlib_timers[0].expired = 0; - adlib_timers[1].expired = 0; - return; - } - if ( !(value & 0x40) ) { - if (value & 1) { - S_printf ("Adlib: Timer 1 counter set to %d\n", adlib_timers[0].reg); - adlib_timers[0].counter = adlib_timers[0].reg; - adlib_timers[0].enabled = 1; - adlib_timers[0].expired = 0; - sb_is_running |= FM_TIMER_RUN; - } else { - S_printf ("Adlib: Timer 1 disabled\n"); - adlib_timers[0].enabled = 0; - } - } - if ( !(value & 0x20) ) { - if (value & 2) { - S_printf ("Adlib: Timer 2 counter set to %d\n", adlib_timers[1].reg); - adlib_timers[1].counter = adlib_timers[1].reg; - adlib_timers[1].enabled = 1; - adlib_timers[1].expired = 0; - sb_is_running |= FM_TIMER_RUN; - } else { - S_printf ("Adlib: Timer 2 disabled\n"); - adlib_timers[1].enabled = 0; - } - } - - sb_update_timers(); - - break; - default: /* unhandled */ - S_printf ("Adlib: Data Writes are unimplemented\n"); - break; - } - break; - - case ADV_ADLIB_REGISTER: - /* DANG_FIXTHIS Advanced Adlib register writes are unimplemented */ - break; - - case ADV_ADLIB_DATA: - /* DANG_FIXTHIS Advanced Adlib data writes are unimplemented */ - break; - - }; +#define ADLIB_BASE 0x388 + OPL_check_timer(); + S_printf("OPL: Write 0x%x to port 0x%x\n", value, port); + YM3812Write(0, port - ADLIB_BASE, value); } - void mpu401_io_write(ioport_t port, Bit8u value) { uint32_t addr; @@ -1723,7 +1664,7 @@ case 0: /* Write data port */ S_printf("MPU401: Write 0x%02x to data port\n",value); - (*mpu401_info.data_write)(value); + mpu401_info.data_write(value); break; case 1: /* Write command port */ @@ -1817,7 +1758,7 @@ { S_printf("SB: Pausing DMA transfer, %d bytes left\n", SB_dsp.bytes_left); if (SB_driver.DMA_pause != NULL) { - (*SB_driver.DMA_pause)(); + SB_driver.DMA_pause(); } else if (debug_level('S') >= 3) { S_printf ("SB: Optional function 'DMA_pause' not provided.\n"); @@ -1836,7 +1777,7 @@ if (!SB_dsp.pause_state) return; if (SB_driver.DMA_resume != NULL) { - (*SB_driver.DMA_resume)(); + SB_driver.DMA_resume(); } else if (debug_level('S') >= 3) { S_printf ("SB: Optional function 'DMA_resume' not provided.\n"); @@ -1913,7 +1854,7 @@ dma_get_block_size(config.sb_dma)); if (dsp_block_size != SB_dsp.length) { if (SB_driver.DMA_set_blocksize != NULL) - (*SB_driver.DMA_set_blocksize) + SB_driver.DMA_set_blocksize (MAX(SB_dsp.length/2, MAX_DMA_TRANSFERSIZE*4), dma_transfer_length); dsp_block_size = SB_dsp.length; } @@ -1927,9 +1868,9 @@ S_printf ("SB: Required function 'DMA_start_init' not provided.\n"); } else - result = (*SB_driver.DMA_start_init)(); + result = SB_driver.DMA_start_init(); if (result == 0) - result = (*SB_driver.set_speed) (real_sampling_rate, SB_dsp.stereo); + result = SB_driver.set_speed(real_sampling_rate, SB_dsp.stereo); if (result<0) { SB_dsp.empty_state |= START_DMA_AT_EMPTY; dsp_block_size = 0; @@ -2159,7 +2100,7 @@ SB_info.irq.pending = 0; if (SB_driver.DMA_complete != NULL) { - (*SB_driver.DMA_complete)(); + SB_driver.DMA_complete(); } else if (debug_level('S') >= 3) { S_printf ("SB: Optional function 'DMA_complete' not provided.\n"); @@ -2176,7 +2117,7 @@ int dma_change_speed = 1; if (SB_driver.DMA_complete_test != NULL) { - result = (*SB_driver.DMA_complete_test)(); + result = SB_driver.DMA_complete_test(); } else if (debug_level('S') >= 3) { S_printf ("SB: Optional function 'DMA_complete_test' not provided.\n"); @@ -2188,7 +2129,7 @@ if (SB_driver.DMA_can_change_speed == NULL) S_printf ("SB: Optional function 'DMA_can_change_speed' not provided.\n"); else - dma_change_speed = (*SB_driver.DMA_can_change_speed)(); + dma_change_speed = SB_driver.DMA_can_change_speed(); if(dma_change_speed) { if(SB_dsp.empty_state & START_DMA_AT_EMPTY) { S_printf("SB: Trying to start DMA transfer again...\n"); @@ -2309,14 +2250,18 @@ S_printf ("SB: FM Initialisation\n"); + YM3812Init(1, 3579545, FM_FREQ); + YM3812SetUpdateHandler(0, OPL_update, 0); + YM3812SetTimerHandler(0, OPL_timer, 0); + /* This is the FM (Adlib + Advanced Adlib) */ - io_device.read_portb = adlib_io_read; - io_device.write_portb = adlib_io_write; + io_device.read_portb = fm_io_read; + io_device.write_portb = fm_io_write; io_device.read_portw = NULL; io_device.write_portw = NULL; io_device.read_portd = NULL; io_device.write_portd = NULL; - io_device.handler_name = "Adlib (+ Advanced) Emulation"; + io_device.handler_name = "Adlib (OPL3) Emulation"; io_device.start_addr = 0x388; io_device.end_addr = 0x38B; io_device.irq = EMU_NO_IRQ; @@ -2325,8 +2270,6 @@ S_printf("ADLIB: Error registering port handler\n"); SB_info.version = SB_NONE; } - - (void) FM_driver_init(); } static void mpu401_init(void) @@ -2357,7 +2300,7 @@ mpu401_info.isdata = 0; - (void) MPU_driver_init(); + MPU_driver_init(); } @@ -2422,10 +2365,7 @@ static void fm_reset (void) { S_printf ("SB: Resetting FM\n"); - - adlib_timers[0].enabled = 0; - adlib_timers[1].enabled = 0; - + YM3812ResetChip(0); FM_driver_reset(); } @@ -2444,7 +2384,7 @@ S_printf ("SB: Required function 'DAC_write' not provided.\n"); } else { - (*SB_driver.DAC_write)(bits, value); + SB_driver.DAC_write(bits, value); } } @@ -2466,7 +2406,7 @@ S_printf ("SB: Required function 'speaker_on' not provided.\n"); } else { - (*SB_driver.speaker_on)(); + SB_driver.speaker_on(); } SB_info.speaker = 1; @@ -2480,7 +2420,7 @@ S_printf ("SB: Required function 'speaker_off' not provided.\n"); } else { - (*SB_driver.speaker_off)(); + SB_driver.speaker_off(); } SB_info.speaker = 0; @@ -2495,7 +2435,7 @@ return 0xFF; } else { - return (*SB_driver.read_mixer)(ch); + return SB_driver.read_mixer(ch); } } @@ -2507,7 +2447,7 @@ S_printf ("SB: Required function 'write_mixer' not provided.\n"); } else { - (*SB_driver.write_mixer)(ch, value); + SB_driver.write_mixer(ch, value); } } @@ -2520,70 +2460,23 @@ void sb_controller(void) { if (sb_is_running & FM_TIMER_RUN) - sb_update_timers (); + FM_do_write(0); if (sb_is_running & DSP_OUTPUT_RUN) - sb_check_complete (); + sb_check_complete(); } -/* Blatant rip-off of serial_update_timers */ -void sb_update_timers () { - static hitimer_t oldtp = 0; /* Timer value from last call */ - hitimer_t tp; /* Current timer value */ - unsigned long elapsed; /* No of 80useconds elapsed */ - Bit8u current_value; - Bit16u int08_irq; - - if ( (adlib_timers[0].enabled != 1) - && (adlib_timers[1].enabled != 1) ) { - - /* - * We only make it here if both of the timers have been turned off - * individually, rather than using the reset. We turn this off in the - * 'sb_is_running' flags - AM - */ - sb_is_running &= (~FM_TIMER_RUN); - - return; - } - - /* Get system time. PLEASE DONT CHANGE THIS LINE, unless you can - * _guarantee_ that the substitute/stored timer value _is_ up to date - * at _this_ instant! (i.e: vm86s exit time did not not work well) - */ - tp = GETusTIME(0); - if (oldtp==0) oldtp=tp; - /* compute the number of 80us(12500 Hz) since last timer update */ - elapsed = (tp - oldtp) / 80; - - /* Save the old timer values for next time */ - oldtp += elapsed * 80; - - int08_irq = pic_irq_list[0x08]; - - if (adlib_timers[0].enabled == 1) { - current_value = adlib_timers[0].counter; - adlib_timers[0].counter += elapsed; - S_printf ("Adlib: timer1 %d\n", adlib_timers[0].counter); - if (current_value > adlib_timers[0].counter) { - S_printf ("Adlib: timer1 has expired \n"); - adlib_timers[0].expired = 1; - pic_request(int08_irq); - } - } - if (adlib_timers[1].enabled == 1) { - current_value = adlib_timers[1].counter; - S_printf ("Adlib: timer2 %d\n", adlib_timers[1].counter); - adlib_timers[1].counter += (elapsed / 4); - if (current_value > adlib_timers[1].counter) { - S_printf ("Adlib: timer2 has expired \n"); - adlib_timers[1].expired = 1; - pic_request(int08_irq); - } - } +void OPL_timer(int channel, double interv_Sec) +{ +unsigned long interv_us; +unsigned long exp_time; + interv_us = (long)(interv_Sec * 1000000); + exp_time = GETusTIME(0) + interv_us; + S_printf("OPL: Expiration interval for channel %d set to %ld (%ld)\n", + channel, exp_time, interv_us); + OPL_expire[channel] = exp_time; } - /* * IRQ Support * =========== --- src/arch/linux/dosext/sound/linux_sound.c Wed Sep 25 03:28:34 2002 +++ src/arch/linux/dosext/sound/linux_sound.c Mon Oct 7 22:56:34 2002 @@ -57,6 +57,7 @@ /* SB static vars */ static int mixer_fd = -1; static int dsp_fd = -1; +static int fm_fd = -1; /* Old variables - Obselete - AM */ static long int block_size = 0; @@ -470,6 +471,30 @@ return amount_done; } +size_t linux_sb_OPL_do_write(void *ptr, size_t size) +{ +int amount_done; +static int in_frag = 0; + if (fm_fd == -1) { + S_printf("SB [Linux]: ERROR: Device is not opened for write!\n"); + return 0; + } + amount_done = write(fm_fd, ptr, size); + S_printf("SB [Linux]: write() returned %d", amount_done); + if (amount_done < 0) { + S_printf(": %s", strerror(errno)); + amount_done = 0; + } + S_printf("\n"); + in_frag += amount_done; + if (in_frag >= (1 << sound_frag_size)) { + S_printf("SB [Linux]: ioctling POST\n"); + ioctl (dsp_fd, SNDCTL_DSP_POST); /* some buggy drivers needs this */ + in_frag = 0; + } + return amount_done; +} + int linux_sb_get_free_fragments(int *total, int *free, int *bytes) { audio_buf_info data; @@ -647,6 +672,11 @@ /* MPU-401 Functions */ mpu401_info.data_write = linux_mpu401_data_write; + /* OPL Functions */ + SB_driver.FM_driver_open = linux_sb_FM_driver_open; + SB_driver.FM_driver_close = linux_sb_FM_driver_close; + SB_driver.OPL_do_write = linux_sb_OPL_do_write; + /* Miscellaneous Functions */ SB_driver.set_speed = linux_sb_set_speed; SB_driver.play_buffer = NULL; @@ -684,11 +714,42 @@ } -int FM_driver_init(void) +int linux_sb_FM_driver_open(int frq, int bits, int stereo) { - S_printf ("SB:[Linux] FM Driver Initialisation Called\n"); +int tmp; + S_printf ("SB:[Linux] FM Driver open Called\n"); - return ADLIB_NONE; + if (fm_fd > -1) { + S_printf ("SB:[Linux] FM Driver already opened\n"); + return 1; + } + + if ((fm_fd = open(config.sb_dsp, O_WRONLY | O_NONBLOCK)) < 0) { + S_printf("SB [Linux]: Unable to open DSP for FM music!\n"); + return ADLIB_NONE; + } + ioctl(fm_fd, SNDCTL_DSP_RESET); + tmp = (bits == 16 ? AFMT_S16_LE : AFMT_S8); + ioctl(fm_fd, SNDCTL_DSP_SAMPLESIZE, &tmp); + tmp = frq; + ioctl(fm_fd, SNDCTL_DSP_SPEED,&tmp); + tmp = stereo; + ioctl(fm_fd, SNDCTL_DSP_STEREO,&tmp); + + return 1; +} + +void linux_sb_FM_driver_close(void) +{ + S_printf ("SB:[Linux] FM Driver close Called\n"); + + if (fm_fd < 0) { + S_printf ("SB:[Linux] FM Driver already closed\n"); + return; + } + + close(fm_fd); + fm_fd = -1; } int MPU_driver_init() @@ -716,7 +777,8 @@ void FM_driver_reset() { S_printf ("SB:[Linux] FM Driver Reset Called\n"); - + if (fm_fd > -1) + ioctl(dsp_fd, SNDCTL_DSP_RESET); } void MPU_driver_reset() --- src/arch/linux/dosext/sound/linux_sound.h Wed Dec 18 18:31:52 2002 +++ src/arch/linux/dosext/sound/linux_sound.h Thu Dec 26 00:08:06 2002 @@ -46,6 +46,10 @@ void linux_sb_dma_complete(void); +int linux_sb_FM_driver_open(int frq, int bits, int stereo); +void linux_sb_FM_driver_close(void); +size_t linux_sb_OPL_do_write(void *ptr, size_t size); + void linux_mpu401_data_write(uint8_t data); int linux_sb_get_free_fragments(int *total, int *free, int *bytes); --- src/dosext/sound/Makefile Tue Mar 19 00:58:13 2002 +++ src/dosext/sound/Makefile Thu Dec 19 11:50:06 2002 @@ -4,15 +4,15 @@ # for details see file COPYING in the DOSEMU distribution # -CFILES = sound.c +CFILES = sound.c fmopl.c HFILES = -DEPENDS= sound.d +DEPENDS= sound.d fmopl.d ALL = $(CFILES) $(HFILES) README.sound TODO SUBDIR=sound -OBJS = sound.o +OBJS = sound.o fmopl.o all: lib --- src/dosext/sound/fmopl.c Thu Jan 1 03:00:00 1970 +++ src/dosext/sound/fmopl.c Mon Oct 7 23:02:49 2002 @@ -0,0 +1,2422 @@ +/* +** +** File: fmopl.c - software implementation of FM sound generator +** types OPL and OPL2 +** +** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmulator development +** Copyright (C) 2002 Jarek Burczynski +** +** Version 0.60 +** + +Revision History: + +04-28-2002 Jarek Burczynski: + - binary exact Envelope Generator (verified on real YM3812); + compared to YM2151: the EG clock is equal to internal_clock, + rates are 2 times slower and volume resolution is one bit less + - modified interface functions (they no longer return pointer - + that's internal to the emulator now): + - new wrapper functions for OPLCreate: YM3526Init(), YM3812Init() and Y8950Init() + - corrected 'off by one' error in feedback calculations (when feedback is off) + - enabled waveform usage (credit goes to Vlad Romascanu and zazzal22) + - speeded up noise generator calculations (Nicola Salmoria) + +03-24-2002 Jarek Burczynski (thanks to Dox for the YM3812 chip) + Complete rewrite (all verified on real YM3812): + - corrected sin_tab and tl_tab data + - corrected operator output calculations + - corrected waveform_select_enable register; + simply: ignore all writes to waveform_select register when + waveform_select_enable == 0 and do not change the waveform previously selected. + - corrected KSR handling + - corrected Envelope Generator: attack shape, Sustain mode and + Percussive/Non-percussive modes handling + - Envelope Generator rates are two times slower now + - LFO amplitude (tremolo) and phase modulation (vibrato) + - rhythm sounds phase generation + - white noise generator (big thanks to Olivier Galibert for mentioning Berlekamp-Massey algorithm) + - corrected key on/off handling (the 'key' signal is ORed from three sources: FM, rhythm and CSM) + - funky details (like ignoring output of operator 1 in BD rhythm sound when connect == 1) + +12-28-2001 Acho A. Tang + - reflected Delta-T EOS status on Y8950 status port. + - fixed subscription range of attack/decay tables + + + To do: + add delay before key off in CSM mode (see CSMKeyControll) + verify volume of the FM part on the Y8950 +*/ + +#include +#include +#include +#include +#include +#include "fmopl.h" + +#ifndef PI +#define PI 3.14159265358979323846 +#endif + + + +/* output final shift */ +#if (OPL_SAMPLE_BITS==16) + #define FINAL_SH (0) + #define MAXOUT (+32767) + #define MINOUT (-32768) +#else + #define FINAL_SH (8) + #define MAXOUT (+127) + #define MINOUT (-128) +#endif + + +#define FREQ_SH 16 /* 16.16 fixed point (frequency calculations) */ +#define EG_SH 16 /* 16.16 fixed point (EG timing) */ +#define LFO_SH 24 /* 8.24 fixed point (LFO calculations) */ +#define TIMER_SH 16 /* 16.16 fixed point (timers calculations) */ + +#define FREQ_MASK ((1<>8)&0xff,sample[0]); \ + } + #else /*save to STEREO file */ + #define SAVE_ALL_CHANNELS \ + { signed int pom = lt; \ + fputc((unsigned short)pom&0xff,sample[0]); \ + fputc(((unsigned short)pom>>8)&0xff,sample[0]); \ + pom = rt; \ + fputc((unsigned short)pom&0xff,sample[0]); \ + fputc(((unsigned short)pom>>8)&0xff,sample[0]); \ + } + #endif +#endif + +/* #define LOG_CYM_FILE */ +#ifdef LOG_CYM_FILE + FILE * cymfile = NULL; +#endif + + + +#define OPL_TYPE_WAVESEL 0x01 /* waveform select */ +#define OPL_TYPE_ADPCM 0x02 /* DELTA-T ADPCM unit */ +#define OPL_TYPE_KEYBOARD 0x04 /* keyboard interface */ +#define OPL_TYPE_IO 0x08 /* I/O port */ + +/* ---------- Generic interface section ---------- */ +#define OPL_TYPE_YM3526 (0) +#define OPL_TYPE_YM3812 (OPL_TYPE_WAVESEL) +#define OPL_TYPE_Y8950 (OPL_TYPE_ADPCM|OPL_TYPE_KEYBOARD|OPL_TYPE_IO) + + + +/* Saving is necessary for member of the 'R' mark for suspend/resume */ + +typedef struct{ + UINT32 ar; /* attack rate: AR<<2 */ + UINT32 dr; /* decay rate: DR<<2 */ + UINT32 rr; /* release rate:RR<<2 */ + UINT8 KSR; /* key scale rate */ + UINT8 ksl; /* keyscale level */ + UINT8 ksr; /* key scale rate: kcode>>KSR */ + UINT8 mul; /* multiple: mul_tab[ML] */ + + /* Phase Generator */ + UINT32 Cnt; /* frequency counter */ + UINT32 Incr; /* frequency counter step */ + UINT8 FB; /* feedback shift value */ + INT32 *connect1; /* slot1 output pointer */ + INT32 op1_out[2]; /* slot1 output for feedback */ + UINT8 CON; /* connection (algorithm) type */ + + /* Envelope Generator */ + UINT8 eg_type; /* percussive/non-percussive mode */ + UINT8 state; /* phase type */ + UINT32 TL; /* total level: TL << 2 */ + INT32 TLL; /* adjusted now TL */ + INT32 volume; /* envelope counter */ + UINT32 sl; /* sustain level: sl_tab[SL] */ + + UINT8 eg_sh_ar; /* (attack state) */ + UINT8 eg_sel_ar; /* (attack state) */ + UINT8 eg_sh_dr; /* (decay state) */ + UINT8 eg_sel_dr; /* (decay state) */ + UINT8 eg_sh_rr; /* (release state) */ + UINT8 eg_sel_rr; /* (release state) */ + + UINT32 key; /* 0 = KEY OFF, >0 = KEY ON */ + + /* LFO */ + UINT32 AMmask; /* LFO Amplitude Modulation enable mask */ + UINT8 vib; /* LFO Phase Modulation enable flag (active high)*/ + + /* waveform select */ + unsigned int wavetable; +} OPL_SLOT; + +typedef struct{ + OPL_SLOT SLOT[2]; + /* phase generator state */ + UINT32 block_fnum; /* block+fnum */ + UINT32 fc; /* Freq. Increment base */ + UINT32 ksl_base; /* KeyScaleLevel Base step */ + UINT8 kcode; /* key code (for key scaling) */ +} OPL_CH; + +/* OPL state */ +typedef struct fm_opl_f { + /* FM channel slots */ + OPL_CH P_CH[9]; /* OPL/OPL2 chips have 9 channels*/ + + UINT32 eg_cnt; /* global envelope generator counter */ + UINT32 eg_timer; /* global envelope generator counter works at frequency = chipclock/72 */ + UINT32 eg_timer_add; /* step of eg_timer */ + UINT32 eg_timer_overflow; /* envelope generator timer overlfows every 1 sample (on real chip) */ + + UINT8 rhythm; /* Rhythm mode */ + + UINT32 fn_tab[1024]; /* fnumber->increment counter */ + + /* LFO */ + UINT8 lfo_am_depth; + UINT8 lfo_pm_depth_range; + UINT32 lfo_am_cnt; + UINT32 lfo_am_inc; + UINT32 lfo_pm_cnt; + UINT32 lfo_pm_inc; + + UINT32 noise_rng; /* 23 bit noise shift register */ + UINT32 noise_p; /* current noise 'phase' */ + UINT32 noise_f; /* current noise period */ + + UINT8 wavesel; /* waveform select enable flag */ + + int T[2]; /* timer counters */ + UINT8 st[2]; /* timer enable */ + +#if BUILD_Y8950 + /* Delta-T ADPCM unit (Y8950) */ + + YM_DELTAT *deltat; + + /* Keyboard / I/O interface unit*/ + UINT8 portDirection; + UINT8 portLatch; + OPL_PORTHANDLER_R porthandler_r; + OPL_PORTHANDLER_W porthandler_w; + int port_param; + OPL_PORTHANDLER_R keyboardhandler_r; + OPL_PORTHANDLER_W keyboardhandler_w; + int keyboard_param; +#endif + + /* external event callback handlers */ + OPL_TIMERHANDLER TimerHandler; /* TIMER handler */ + int TimerParam; /* TIMER parameter */ + OPL_IRQHANDLER IRQHandler; /* IRQ handler */ + int IRQParam; /* IRQ parameter */ + OPL_UPDATEHANDLER UpdateHandler;/* stream update handler */ + int UpdateParam; /* stream update parameter */ + + UINT8 type; /* chip type */ + UINT8 address; /* address register */ + UINT8 status; /* status flag */ + UINT8 statusmask; /* status mask */ + UINT8 mode; /* Reg.08 : CSM,notesel,etc. */ + + int clock; /* master clock (Hz) */ + int rate; /* sampling rate (Hz) */ + double freqbase; /* frequency base */ + double TimerBase; /* Timer base time (==sampling time)*/ +} FM_OPL; + + + +/* mapping of register number (offset) to slot number used by the emulator */ +static const int slot_array[32]= +{ + 0, 2, 4, 1, 3, 5,-1,-1, + 6, 8,10, 7, 9,11,-1,-1, + 12,14,16,13,15,17,-1,-1, + -1,-1,-1,-1,-1,-1,-1,-1 +}; + +/* key scale level */ +/* table is 3dB/octave , DV converts this into 6dB/octave */ +/* 0.1875 is bit 0 weight of the envelope counter (volume) expressed in the 'decibel' scale */ +#define DV (0.1875/2.0) +static const UINT32 ksl_tab[8*16]= +{ + /* OCT 0 */ + 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, + 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, + 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, + 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, + /* OCT 1 */ + 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, + 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, + 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV, + 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV, + /* OCT 2 */ + 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, + 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV, + 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV, + 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV, + /* OCT 3 */ + 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV, + 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV, + 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV, + 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV, + /* OCT 4 */ + 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV, + 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV, + 9.000/DV, 9.750/DV,10.125/DV,10.500/DV, + 10.875/DV,11.250/DV,11.625/DV,12.000/DV, + /* OCT 5 */ + 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV, + 9.000/DV,10.125/DV,10.875/DV,11.625/DV, + 12.000/DV,12.750/DV,13.125/DV,13.500/DV, + 13.875/DV,14.250/DV,14.625/DV,15.000/DV, + /* OCT 6 */ + 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV, + 12.000/DV,13.125/DV,13.875/DV,14.625/DV, + 15.000/DV,15.750/DV,16.125/DV,16.500/DV, + 16.875/DV,17.250/DV,17.625/DV,18.000/DV, + /* OCT 7 */ + 0.000/DV, 9.000/DV,12.000/DV,13.875/DV, + 15.000/DV,16.125/DV,16.875/DV,17.625/DV, + 18.000/DV,18.750/DV,19.125/DV,19.500/DV, + 19.875/DV,20.250/DV,20.625/DV,21.000/DV +}; +#undef DV + +/* sustain level table (3dB per step) */ +/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/ +#define SC(db) (UINT32) ( db * (2.0/ENV_STEP) ) +static const UINT32 sl_tab[16]={ + SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7), + SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31) +}; +#undef SC + + +#define RATE_STEPS (8) +static const unsigned char eg_inc[15*RATE_STEPS]={ + +/*cycle:0 1 2 3 4 5 6 7*/ + +/* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..12 0 (increment by 0 or 1) */ +/* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..12 1 */ +/* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..12 2 */ +/* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..12 3 */ + +/* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 13 0 (increment by 1) */ +/* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 13 1 */ +/* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 13 2 */ +/* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 13 3 */ + +/* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 14 0 (increment by 2) */ +/* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 14 1 */ +/*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 14 2 */ +/*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 14 3 */ + +/*12 */ 4,4, 4,4, 4,4, 4,4, /* rates 15 0, 15 1, 15 2, 15 3 (increment by 4) */ +/*13 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 2, 15 3 for attack */ +/*14 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */ +}; + + +#define O(a) (a*RATE_STEPS) + +/*note that there is no O(13) in this table - it's directly in the code */ +static const unsigned char eg_rate_select[16+64+16]={ /* Envelope Generator rates (16 + 64 rates + 16 RKS) */ +/* 16 dummy (infinite time) rates */ +O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14), +O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14), + +/* rates 00-12 */ +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), + +/* rate 13 */ +O( 4),O( 5),O( 6),O( 7), + +/* rate 14 */ +O( 8),O( 9),O(10),O(11), + +/* rate 15 */ +O(12),O(12),O(12),O(12), + +/* 16 dummy rates (same as 15 3) */ +O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12), +O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12), + +}; +#undef O + +//rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 +//shift 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0 +//mask 4095, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0 + +#define O(a) (a*1) +static const unsigned char eg_rate_shift[16+64+16]={ /* Envelope Generator counter shifts (16 + 64 rates + 16 RKS) */ +/* 16 dummy (infinite time) rates */ +O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16), +O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16), + +/* rates 00-12 */ +O(12),O(12),O(12),O(12), +O(11),O(11),O(11),O(11), +O(10),O(10),O(10),O(10), +O( 9),O( 9),O( 9),O( 9), +O( 8),O( 8),O( 8),O( 8), +O( 7),O( 7),O( 7),O( 7), +O( 6),O( 6),O( 6),O( 6), +O( 5),O( 5),O( 5),O( 5), +O( 4),O( 4),O( 4),O( 4), +O( 3),O( 3),O( 3),O( 3), +O( 2),O( 2),O( 2),O( 2), +O( 1),O( 1),O( 1),O( 1), +O( 0),O( 0),O( 0),O( 0), + +/* rate 13 */ +O( 0),O( 0),O( 0),O( 0), + +/* rate 14 */ +O( 0),O( 0),O( 0),O( 0), + +/* rate 15 */ +O( 0),O( 0),O( 0),O( 0), + +/* 16 dummy rates (same as 15 3) */ +O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0), +O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0), + +}; +#undef O + + +/* multiple table */ +#define ML 2 +static const UINT8 mul_tab[16]= { +/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,10,12,12,15,15 */ + 0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML, + 8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML +}; +#undef ML + +/* TL_TAB_LEN is calculated as: +* 12 - sinus amplitude bits (Y axis) +* 2 - sinus sign bit (Y axis) +* TL_RES_LEN - sinus resolution (X axis) +*/ +#define TL_TAB_LEN (12*2*TL_RES_LEN) +static signed int tl_tab[TL_TAB_LEN]; + +#define ENV_QUIET (TL_TAB_LEN>>4) + +/* sin waveform table in 'decibel' scale */ +/* four waveforms on OPL2 type chips */ +static unsigned int sin_tab[SIN_LEN * 4]; + + +/* LFO Amplitude Modulation table (verified on real YM3812) + 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples + + Length: 210 elements. + + Each of the elements has to be repeated + exactly 64 times (on 64 consecutive samples). + The whole table takes: 64 * 210 = 13440 samples. + + When AM = 1 data is used directly + When AM = 0 data is divided by 4 before being used (loosing precision is important) +*/ + +#define LFO_AM_TAB_ELEMENTS 210 + +static const UINT8 lfo_am_table[LFO_AM_TAB_ELEMENTS] = { +0,0,0,0,0,0,0, +1,1,1,1, +2,2,2,2, +3,3,3,3, +4,4,4,4, +5,5,5,5, +6,6,6,6, +7,7,7,7, +8,8,8,8, +9,9,9,9, +10,10,10,10, +11,11,11,11, +12,12,12,12, +13,13,13,13, +14,14,14,14, +15,15,15,15, +16,16,16,16, +17,17,17,17, +18,18,18,18, +19,19,19,19, +20,20,20,20, +21,21,21,21, +22,22,22,22, +23,23,23,23, +24,24,24,24, +25,25,25,25, +26,26,26, +25,25,25,25, +24,24,24,24, +23,23,23,23, +22,22,22,22, +21,21,21,21, +20,20,20,20, +19,19,19,19, +18,18,18,18, +17,17,17,17, +16,16,16,16, +15,15,15,15, +14,14,14,14, +13,13,13,13, +12,12,12,12, +11,11,11,11, +10,10,10,10, +9,9,9,9, +8,8,8,8, +7,7,7,7, +6,6,6,6, +5,5,5,5, +4,4,4,4, +3,3,3,3, +2,2,2,2, +1,1,1,1 +}; + +/* LFO Phase Modulation table (verified on real YM3812) */ +static const INT8 lfo_pm_table[8*8*2] = { + +/* FNUM2/FNUM = 00 0xxxxxxx (0x0000) */ +0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/ +0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 1*/ + +/* FNUM2/FNUM = 00 1xxxxxxx (0x0080) */ +0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/ +1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 1*/ + +/* FNUM2/FNUM = 01 0xxxxxxx (0x0100) */ +1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/ +2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 1*/ + +/* FNUM2/FNUM = 01 1xxxxxxx (0x0180) */ +1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/ +3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 1*/ + +/* FNUM2/FNUM = 10 0xxxxxxx (0x0200) */ +2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/ +4, 2, 0,-2,-4,-2, 0, 2, /*LFO PM depth = 1*/ + +/* FNUM2/FNUM = 10 1xxxxxxx (0x0280) */ +2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/ +5, 2, 0,-2,-5,-2, 0, 2, /*LFO PM depth = 1*/ + +/* FNUM2/FNUM = 11 0xxxxxxx (0x0300) */ +3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/ +6, 3, 0,-3,-6,-3, 0, 3, /*LFO PM depth = 1*/ + +/* FNUM2/FNUM = 11 1xxxxxxx (0x0380) */ +3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/ +7, 3, 0,-3,-7,-3, 0, 3 /*LFO PM depth = 1*/ +}; + + +/* lock level of common table */ +static int num_lock = 0; + +/* work table */ +static void *cur_chip = NULL; /* current chip point */ +OPL_SLOT *SLOT7_1,*SLOT7_2,*SLOT8_1,*SLOT8_2; + +static signed int phase_modulation; /* phase modulation input (SLOT 2) */ +static signed int output[1]; + +#if BUILD_Y8950 +static INT32 output_deltat[4]; /* for Y8950 DELTA-T */ +#endif + +static UINT32 LFO_AM; +static INT32 LFO_PM; + + + +inline int limit( int val, int max, int min ) { + if ( val > max ) + val = max; + else if ( val < min ) + val = min; + + return val; +} + + +/* status set and IRQ handling */ +inline void OPL_STATUS_SET(FM_OPL *OPL,int flag) +{ + /* set status flag */ + OPL->status |= flag; + if(!(OPL->status & 0x80)) + { + if(OPL->status & OPL->statusmask) + { /* IRQ on */ + OPL->status |= 0x80; + /* callback user interrupt handler (IRQ is OFF to ON) */ + if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1); + } + } +} + +/* status reset and IRQ handling */ +inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag) +{ + /* reset status flag */ + OPL->status &=~flag; + if((OPL->status & 0x80)) + { + if (!(OPL->status & OPL->statusmask) ) + { + OPL->status &= 0x7f; + /* callback user interrupt handler (IRQ is ON to OFF) */ + if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0); + } + } +} + +/* IRQ mask set */ +inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag) +{ + OPL->statusmask = flag; + /* IRQ handling check */ + OPL_STATUS_SET(OPL,0); + OPL_STATUS_RESET(OPL,0); +} + + +/* advance LFO to next sample */ +inline void advance_lfo(FM_OPL *OPL) +{ + UINT8 tmp; + + /* LFO */ + OPL->lfo_am_cnt += OPL->lfo_am_inc; + if (OPL->lfo_am_cnt >= (LFO_AM_TAB_ELEMENTS<lfo_am_cnt -= (LFO_AM_TAB_ELEMENTS<lfo_am_cnt >> LFO_SH ]; + + if (OPL->lfo_am_depth) + LFO_AM = tmp; + else + LFO_AM = tmp>>2; + + OPL->lfo_pm_cnt += OPL->lfo_pm_inc; + LFO_PM = ((OPL->lfo_pm_cnt>>LFO_SH) & 7) | OPL->lfo_pm_depth_range; +} + +/* advance to next sample */ +inline void advance(FM_OPL *OPL) +{ + OPL_CH *CH; + OPL_SLOT *op; + int i; + + OPL->eg_timer += OPL->eg_timer_add; + + while (OPL->eg_timer >= OPL->eg_timer_overflow) + { + OPL->eg_timer -= OPL->eg_timer_overflow; + + OPL->eg_cnt++; + + for (i=0; i<9*2; i++) + { + CH = &OPL->P_CH[i/2]; + op = &CH->SLOT[i&1]; + + /* Envelope Generator */ + switch(op->state) + { + case EG_ATT: /* attack phase */ + { + + if ( !(OPL->eg_cnt & ((1<eg_sh_ar)-1) ) ) + { + op->volume += (~op->volume * + (eg_inc[op->eg_sel_ar + ((OPL->eg_cnt>>op->eg_sh_ar)&7)]) + ) >>3; + + if (op->volume <= MIN_ATT_INDEX) + { + op->volume = MIN_ATT_INDEX; + op->state = EG_DEC; + } + + } + + } + break; + + case EG_DEC: /* decay phase */ + if ( !(OPL->eg_cnt & ((1<eg_sh_dr)-1) ) ) + { + op->volume += eg_inc[op->eg_sel_dr + ((OPL->eg_cnt>>op->eg_sh_dr)&7)]; + + if ( op->volume >= op->sl ) + op->state = EG_SUS; + + } + break; + + case EG_SUS: /* sustain phase */ + + /* this is important behaviour: + one can change percusive/non-percussive modes on the fly and + the chip will remain in sustain phase - verified on real YM3812 */ + + if(op->eg_type) /* non-percussive mode */ + { + /* do nothing */ + } + else /* percussive mode */ + { + /* during sustain phase chip adds Release Rate (in percussive mode) */ + if ( !(OPL->eg_cnt & ((1<eg_sh_rr)-1) ) ) + { + op->volume += eg_inc[op->eg_sel_rr + ((OPL->eg_cnt>>op->eg_sh_rr)&7)]; + + if ( op->volume >= MAX_ATT_INDEX ) + op->volume = MAX_ATT_INDEX; + } + /* else do nothing in sustain phase */ + } + break; + + case EG_REL: /* release phase */ + if ( !(OPL->eg_cnt & ((1<eg_sh_rr)-1) ) ) + { + op->volume += eg_inc[op->eg_sel_rr + ((OPL->eg_cnt>>op->eg_sh_rr)&7)]; + + if ( op->volume >= MAX_ATT_INDEX ) + { + op->volume = MAX_ATT_INDEX; + op->state = EG_OFF; + } + + } + break; + + default: + break; + } + } + } + + for (i=0; i<9*2; i++) + { + CH = &OPL->P_CH[i/2]; + op = &CH->SLOT[i&1]; + + /* Phase Generator */ + if(op->vib) + { + UINT8 block; + unsigned int block_fnum = CH->block_fnum; + + unsigned int fnum_lfo = (block_fnum&0x0380) >> 7; + + signed int lfo_fn_table_index_offset = lfo_pm_table[LFO_PM + 16*fnum_lfo ]; + + if (lfo_fn_table_index_offset) /* LFO phase modulation active */ + { + block_fnum += lfo_fn_table_index_offset; + block = (block_fnum&0x1c00) >> 10; + op->Cnt += (OPL->fn_tab[block_fnum&0x03ff] >> (7-block)) * op->mul;//ok + } + else /* LFO phase modulation = zero */ + { + op->Cnt += op->Incr; + } + } + else /* LFO phase modulation disabled for this operator */ + { + op->Cnt += op->Incr; + } + } + + /* The Noise Generator of the YM3812 is 23-bit shift register. + * Period is equal to 2^23-2 samples. + * Register works at sampling frequency of the chip, so output + * can change on every sample. + * + * Output of the register and input to the bit 22 is: + * bit0 XOR bit14 XOR bit15 XOR bit22 + * + * Simply use bit 22 as the noise output. + */ + + OPL->noise_p += OPL->noise_f; + i = OPL->noise_p >> FREQ_SH; /* number of events (shifts of the shift register) */ + OPL->noise_p &= FREQ_MASK; + while (i) + { + /* + UINT32 j; + j = ( (OPL->noise_rng) ^ (OPL->noise_rng>>14) ^ (OPL->noise_rng>>15) ^ (OPL->noise_rng>>22) ) & 1; + OPL->noise_rng = (j<<22) | (OPL->noise_rng>>1); + */ + + /* + Instead of doing all the logic operations above, we + use a trick here (and use bit 0 as the noise output). + The difference is only that the noise bit changes one + step ahead. This doesn't matter since we don't know + what is real state of the noise_rng after the reset. + */ + + if (OPL->noise_rng & 1) OPL->noise_rng ^= 0x800302; + OPL->noise_rng >>= 1; + + i--; + } +} + + +inline signed int op_calc(UINT32 phase, unsigned int env, signed int pm, unsigned int wave_tab) +{ + UINT32 p; + + p = (env<<4) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + (pm<<16))) >> FREQ_SH ) & SIN_MASK) ]; + + if (p >= TL_TAB_LEN) + return 0; + return tl_tab[p]; +} + +inline signed int op_calc1(UINT32 phase, unsigned int env, signed int pm, unsigned int wave_tab) +{ + UINT32 p; + INT32 i; + + i = (phase & ~FREQ_MASK) + pm; + +/*logerror("i=%08x (i>>16)&511=%8i phase=%i [pm=%08x] ",i, (i>>16)&511, phase>>FREQ_SH, pm);*/ + + p = (env<<4) + sin_tab[ wave_tab + ((i>>FREQ_SH) & SIN_MASK)]; + +/*logerror("(p&255=%i p>>8=%i) out= %i\n", p&255,p>>8, tl_tab[p&255]>>(p>>8) );*/ + + if (p >= TL_TAB_LEN) + return 0; + return tl_tab[p]; +} + + +#define volume_calc(OP) ((OP)->TLL + ((UINT32)(OP)->volume) + (LFO_AM & (OP)->AMmask)) + +/* calculate output */ +inline void OPL_CALC_CH( OPL_CH *CH ) +{ + OPL_SLOT *SLOT; + unsigned int env; + signed int out; + + phase_modulation = 0; + + /* SLOT 1 */ + SLOT = &CH->SLOT[SLOT1]; + env = volume_calc(SLOT); + out = SLOT->op1_out[0] + SLOT->op1_out[1]; + SLOT->op1_out[0] = SLOT->op1_out[1]; + *SLOT->connect1 += SLOT->op1_out[0]; + SLOT->op1_out[1] = 0; + if( env < ENV_QUIET ) + { + if (!SLOT->FB) + out = 0; + SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<FB), SLOT->wavetable ); + } + + /* SLOT 2 */ + SLOT++; + env = volume_calc(SLOT); + if( env < ENV_QUIET ) + output[0] += op_calc(SLOT->Cnt, env, phase_modulation, SLOT->wavetable); +} + +/* + operators used in the rhythm sounds generation process: + + Envelope Generator: + +channel operator register number Bass High Snare Tom Top +/ slot number TL ARDR SLRR Wave Drum Hat Drum Tom Cymbal + 6 / 0 12 50 70 90 f0 + + 6 / 1 15 53 73 93 f3 + + 7 / 0 13 51 71 91 f1 + + 7 / 1 16 54 74 94 f4 + + 8 / 0 14 52 72 92 f2 + + 8 / 1 17 55 75 95 f5 + + + Phase Generator: + +channel operator register number Bass High Snare Tom Top +/ slot number MULTIPLE Drum Hat Drum Tom Cymbal + 6 / 0 12 30 + + 6 / 1 15 33 + + 7 / 0 13 31 + + + + 7 / 1 16 34 ----- n o t u s e d ----- + 8 / 0 14 32 + + 8 / 1 17 35 + + + +channel operator register number Bass High Snare Tom Top +number number BLK/FNUM2 FNUM Drum Hat Drum Tom Cymbal + 6 12,15 B6 A6 + + + 7 13,16 B7 A7 + + + + + 8 14,17 B8 A8 + + + + +*/ + +/* calculate rhythm */ + +inline void OPL_CALC_RH( OPL_CH *CH, unsigned int noise ) +{ + OPL_SLOT *SLOT; + signed int out; + unsigned int env; + + + /* Bass Drum (verified on real YM3812): + - depends on the channel 6 'connect' register: + when connect = 0 it works the same as in normal (non-rhythm) mode (op1->op2->out) + when connect = 1 _only_ operator 2 is present on output (op2->out), operator 1 is ignored + - output sample always is multiplied by 2 + */ + + phase_modulation = 0; + /* SLOT 1 */ + SLOT = &CH[6].SLOT[SLOT1]; + env = volume_calc(SLOT); + + out = SLOT->op1_out[0] + SLOT->op1_out[1]; + SLOT->op1_out[0] = SLOT->op1_out[1]; + + if (!SLOT->CON) + phase_modulation = SLOT->op1_out[0]; + //else ignore output of operator 1 + + SLOT->op1_out[1] = 0; + if( env < ENV_QUIET ) + { + if (!SLOT->FB) + out = 0; + SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<FB), SLOT->wavetable ); + } + + /* SLOT 2 */ + SLOT++; + env = volume_calc(SLOT); + if( env < ENV_QUIET ) + output[0] += op_calc(SLOT->Cnt, env, phase_modulation, SLOT->wavetable) * 2; + + + /* Phase generation is based on: */ + // HH (13) channel 7->slot 1 combined with channel 8->slot 2 (same combination as TOP CYMBAL but different output phases) + // SD (16) channel 7->slot 1 + // TOM (14) channel 8->slot 1 + // TOP (17) channel 7->slot 1 combined with channel 8->slot 2 (same combination as HIGH HAT but different output phases) + + /* Envelope generation based on: */ + // HH channel 7->slot1 + // SD channel 7->slot2 + // TOM channel 8->slot1 + // TOP channel 8->slot2 + + + /* The following formulas can be well optimized. + I leave them in direct form for now (in case I've missed something). + */ + + /* High Hat (verified on real YM3812) */ + env = volume_calc(SLOT7_1); + if( env < ENV_QUIET ) + { + + /* high hat phase generation: + phase = d0 or 234 (based on frequency only) + phase = 34 or 2d0 (based on noise) + */ + + /* base frequency derived from operator 1 in channel 7 */ + unsigned char bit7 = ((SLOT7_1->Cnt>>FREQ_SH)>>7)&1; + unsigned char bit3 = ((SLOT7_1->Cnt>>FREQ_SH)>>3)&1; + unsigned char bit2 = ((SLOT7_1->Cnt>>FREQ_SH)>>2)&1; + + unsigned char res1 = (bit2 ^ bit7) | bit3; + + /* when res1 = 0 phase = 0x000 | 0xd0; */ + /* when res1 = 1 phase = 0x200 | (0xd0>>2); */ + UINT32 phase = res1 ? (0x200|(0xd0>>2)) : 0xd0; + + /* enable gate based on frequency of operator 2 in channel 8 */ + unsigned char bit5e= ((SLOT8_2->Cnt>>FREQ_SH)>>5)&1; + unsigned char bit3e= ((SLOT8_2->Cnt>>FREQ_SH)>>3)&1; + + unsigned char res2 = (bit3e ^ bit5e); + + /* when res2 = 0 pass the phase from calculation above (res1); */ + /* when res2 = 1 phase = 0x200 | (0xd0>>2); */ + if (res2) + phase = (0x200|(0xd0>>2)); + + + /* when phase & 0x200 is set and noise=1 then phase = 0x200|0xd0 */ + /* when phase & 0x200 is set and noise=0 then phase = 0x200|(0xd0>>2), ie no change */ + if (phase&0x200) + { + if (noise) + phase = 0x200|0xd0; + } + else + /* when phase & 0x200 is clear and noise=1 then phase = 0xd0>>2 */ + /* when phase & 0x200 is clear and noise=0 then phase = 0xd0, ie no change */ + { + if (noise) + phase = 0xd0>>2; + } + + output[0] += op_calc(phase<wavetable) * 2; + } + + /* Snare Drum (verified on real YM3812) */ + env = volume_calc(SLOT7_2); + if( env < ENV_QUIET ) + { + /* base frequency derived from operator 1 in channel 7 */ + unsigned char bit8 = ((SLOT7_1->Cnt>>FREQ_SH)>>8)&1; + + /* when bit8 = 0 phase = 0x100; */ + /* when bit8 = 1 phase = 0x200; */ + UINT32 phase = bit8 ? 0x200 : 0x100; + + /* Noise bit XOR'es phase by 0x100 */ + /* when noisebit = 0 pass the phase from calculation above */ + /* when noisebit = 1 phase ^= 0x100; */ + /* in other words: phase ^= (noisebit<<8); */ + if (noise) + phase ^= 0x100; + + output[0] += op_calc(phase<wavetable) * 2; + } + + /* Tom Tom (verified on real YM3812) */ + env = volume_calc(SLOT8_1); + if( env < ENV_QUIET ) + output[0] += op_calc(SLOT8_1->Cnt, env, 0, SLOT->wavetable) * 2; + + /* Top Cymbal (verified on real YM3812) */ + env = volume_calc(SLOT8_2); + if( env < ENV_QUIET ) + { + /* base frequency derived from operator 1 in channel 7 */ + unsigned char bit7 = ((SLOT7_1->Cnt>>FREQ_SH)>>7)&1; + unsigned char bit3 = ((SLOT7_1->Cnt>>FREQ_SH)>>3)&1; + unsigned char bit2 = ((SLOT7_1->Cnt>>FREQ_SH)>>2)&1; + + unsigned char res1 = (bit2 ^ bit7) | bit3; + + /* when res1 = 0 phase = 0x000 | 0x100; */ + /* when res1 = 1 phase = 0x200 | 0x100; */ + UINT32 phase = res1 ? 0x300 : 0x100; + + /* enable gate based on frequency of operator 2 in channel 8 */ + unsigned char bit5e= ((SLOT8_2->Cnt>>FREQ_SH)>>5)&1; + unsigned char bit3e= ((SLOT8_2->Cnt>>FREQ_SH)>>3)&1; + + unsigned char res2 = (bit3e ^ bit5e); + /* when res2 = 0 pass the phase from calculation above (res1); */ + /* when res2 = 1 phase = 0x200 | 0x100; */ + if (res2) + phase = 0x300; + + output[0] += op_calc(phase<wavetable) * 2; + } + +} + + +/* generic table initialize */ +static int init_tables(void) +{ + signed int i,x; + signed int n; + double o,m; + + + for (x=0; x>= 4; /* 12 bits here */ + if (n&1) /* round to nearest */ + n = (n>>1)+1; + else + n = n>>1; + /* 11 bits here (rounded) */ + n <<= 1; /* 12 bits here (as in real chip) */ + tl_tab[ x*2 + 0 ] = n; + tl_tab[ x*2 + 1 ] = -tl_tab[ x*2 + 0 ]; + + for (i=1; i<12; i++) + { + tl_tab[ x*2+0 + i*2*TL_RES_LEN ] = tl_tab[ x*2+0 ]>>i; + tl_tab[ x*2+1 + i*2*TL_RES_LEN ] = -tl_tab[ x*2+0 + i*2*TL_RES_LEN ]; + } + #if 0 + logerror("tl %04i", x*2); + for (i=0; i<12; i++) + logerror(", [%02i] %5i", i*2, tl_tab[ x*2 /*+1*/ + i*2*TL_RES_LEN ] ); + logerror("\n"); + #endif + } + /*logerror("FMOPL.C: TL_TAB_LEN = %i elements (%i bytes)\n",TL_TAB_LEN, (int)sizeof(tl_tab));*/ + + + for (i=0; i0.0) + o = 8*log(1.0/m)/log(2); /* convert to 'decibels' */ + else + o = 8*log(-1.0/m)/log(2); /* convert to 'decibels' */ + + o = o / (ENV_STEP/4); + + n = (int)(2.0*o); + if (n&1) /* round to nearest */ + n = (n>>1)+1; + else + n = n>>1; + + sin_tab[ i ] = n*2 + (m>=0.0? 0: 1 ); + + /*logerror("FMOPL.C: sin [%4i (hex=%03x)]= %4i (tl_tab value=%5i)\n", i, i, sin_tab[i], tl_tab[sin_tab[i]] );*/ + } + + for (i=0; i>1) ]; + + /* waveform 3: _ _ _ _ */ + /* / |_/ |_/ |_/ |_*/ + /* abs(output only first quarter of the sinus waveform) */ + + if (i & (1<<(SIN_BITS-2)) ) + sin_tab[3*SIN_LEN+i] = TL_TAB_LEN; + else + sin_tab[3*SIN_LEN+i] = sin_tab[i & (SIN_MASK>>2)]; + + /*logerror("FMOPL.C: sin1[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[1*SIN_LEN+i], tl_tab[sin_tab[1*SIN_LEN+i]] ); + logerror("FMOPL.C: sin2[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[2*SIN_LEN+i], tl_tab[sin_tab[2*SIN_LEN+i]] ); + logerror("FMOPL.C: sin3[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[3*SIN_LEN+i], tl_tab[sin_tab[3*SIN_LEN+i]] );*/ + } + /*logerror("FMOPL.C: ENV_QUIET= %08x (dec*8=%i)\n", ENV_QUIET, ENV_QUIET*8 );*/ + + +#ifdef SAVE_SAMPLE + sample[0]=fopen("sampsum.pcm","wb"); +#endif + + return 1; +} + +static void OPLCloseTable( void ) +{ +#ifdef SAVE_SAMPLE + fclose(sample[0]); +#endif +} + + + +static void OPL_initalize(FM_OPL *OPL) +{ + int i; + + /* frequency base */ +#if 1 + OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / 72.0) / OPL->rate : 0; +#else + OPL->rate = (double)OPL->clock / 72.0; + OPL->freqbase = 1.0; +#endif + + /* Timer base time */ + OPL->TimerBase = 1.0 / ((double)OPL->clock / 72.0 ); + + /* make fnumber -> increment counter table */ + for( i=0 ; i < 1024 ; i++ ) + { + /* opn phase increment counter = 20bit */ + OPL->fn_tab[i] = (UINT32)( (double)i * 64 * OPL->freqbase * (1<<(FREQ_SH-10)) ); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */ +#if 0 + logerror("FMOPL.C: fn_tab[%4i] = %08x (dec=%8i)\n", + i, OPL->fn_tab[i]>>6, OPL->fn_tab[i]>>6 ); +#endif + } + +#if 0 + for( i=0 ; i < 16 ; i++ ) + { + logerror("FMOPL.C: sl_tab[%i] = %08x\n", + i, sl_tab[i] ); + } + for( i=0 ; i < 8 ; i++ ) + { + int j; + logerror("FMOPL.C: ksl_tab[oct=%2i] =",i); + for (j=0; j<16; j++) + { + logerror("%08x ", ksl_tab[i*16+j] ); + } + logerror("\n"); + } +#endif + + + /* Amplitude modulation: 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples */ + /* One entry from LFO_AM_TABLE lasts for 64 samples */ + OPL->lfo_am_inc = (1.0 / 64.0 ) * (1<freqbase; + + /* Vibrato: 8 output levels (triangle waveform); 1 level takes 1024 samples */ + OPL->lfo_pm_inc = (1.0 / 1024.0) * (1<freqbase; + + /*logerror ("OPL->lfo_am_inc = %8x ; OPL->lfo_pm_inc = %8x\n", OPL->lfo_am_inc, OPL->lfo_pm_inc);*/ + + /* Noise generator: a step takes 1 sample */ + OPL->noise_f = (1.0 / 1.0) * (1<freqbase; + + OPL->eg_timer_add = (1<freqbase; + OPL->eg_timer_overflow = ( 1 ) * (1<eg_timer_add, OPL->eg_timer_overflow);*/ + +} + +inline void FM_KEYON(OPL_SLOT *SLOT, UINT32 key_set) +{ + if( !SLOT->key ) + { + /* restart Phase Generator */ + SLOT->Cnt = 0; + /* phase -> Attack */ + SLOT->state = EG_ATT; + } + SLOT->key |= key_set; +} + +inline void FM_KEYOFF(OPL_SLOT *SLOT, UINT32 key_clr) +{ + if( SLOT->key ) + { + SLOT->key &= key_clr; + + if( !SLOT->key ) + { + /* phase -> Release */ + if (SLOT->state>EG_REL) + SLOT->state = EG_REL; + } + } +} + +/* update phase increment counter of operator (also update the EG rates if necessary) */ +inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT) +{ + int ksr; + + /* (frequency) phase increment counter */ + SLOT->Incr = CH->fc * SLOT->mul; + ksr = CH->kcode >> SLOT->KSR; + + if( SLOT->ksr != ksr ) + { + SLOT->ksr = ksr; + + /* calculate envelope generator rates */ + if ((SLOT->ar + SLOT->ksr) < 16+62) + { + SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ]; + SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ]; + } + else + { + SLOT->eg_sh_ar = 0; + SLOT->eg_sel_ar = 13*RATE_STEPS; + } + SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ]; + SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ]; + SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ]; + SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ]; + } +} + +/* set multi,am,vib,EG-TYP,KSR,mul */ +inline void set_mul(FM_OPL *OPL,int slot,int v) +{ + OPL_CH *CH = &OPL->P_CH[slot/2]; + OPL_SLOT *SLOT = &CH->SLOT[slot&1]; + + SLOT->mul = mul_tab[v&0x0f]; + SLOT->KSR = (v&0x10) ? 0 : 2; + SLOT->eg_type = (v&0x20); + SLOT->vib = (v&0x40); + SLOT->AMmask = (v&0x80) ? ~0 : 0; + CALC_FCSLOT(CH,SLOT); +} + +/* set ksl & tl */ +inline void set_ksl_tl(FM_OPL *OPL,int slot,int v) +{ + OPL_CH *CH = &OPL->P_CH[slot/2]; + OPL_SLOT *SLOT = &CH->SLOT[slot&1]; + int ksl = v>>6; /* 0 / 1.5 / 3.0 / 6.0 dB/OCT */ + + SLOT->ksl = ksl ? 3-ksl : 31; + SLOT->TL = (v&0x3f)<<(ENV_BITS-1-7); /* 7 bits TL (bit 6 = always 0) */ + + SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); +} + +/* set attack rate & decay rate */ +inline void set_ar_dr(FM_OPL *OPL,int slot,int v) +{ + OPL_CH *CH = &OPL->P_CH[slot/2]; + OPL_SLOT *SLOT = &CH->SLOT[slot&1]; + + SLOT->ar = (v>>4) ? 16 + ((v>>4) <<2) : 0; + + if ((SLOT->ar + SLOT->ksr) < 16+62) + { + SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ]; + SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ]; + } + else + { + SLOT->eg_sh_ar = 0; + SLOT->eg_sel_ar = 13*RATE_STEPS; + } + + SLOT->dr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0; + SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ]; + SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ]; +} + +/* set sustain level & release rate */ +inline void set_sl_rr(FM_OPL *OPL,int slot,int v) +{ + OPL_CH *CH = &OPL->P_CH[slot/2]; + OPL_SLOT *SLOT = &CH->SLOT[slot&1]; + + SLOT->sl = sl_tab[ v>>4 ]; + + SLOT->rr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0; + SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ]; + SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ]; +} + + +/* write a value v to register r on OPL chip */ +static void OPLWriteReg(FM_OPL *OPL, int r, int v) +{ + OPL_CH *CH; + int slot; + int block_fnum; + + + /* adjust bus to 8 bits */ + r &= 0xff; + v &= 0xff; + +#ifdef LOG_CYM_FILE + if ((cymfile) && (r!=0) ) + { + fputc( (unsigned char)r, cymfile ); + fputc( (unsigned char)v, cymfile ); + } +#endif + + + switch(r&0xe0) + { + case 0x00: /* 00-1f:control */ + switch(r&0x1f) + { + case 0x01: /* waveform select enable */ + if(OPL->type&OPL_TYPE_WAVESEL) + { + OPL->wavesel = v&0x20; + /* do not change the waveform previously selected */ + } + break; + case 0x02: /* Timer 1 */ + OPL->T[0] = (256-v)*4; + break; + case 0x03: /* Timer 2 */ + OPL->T[1] = (256-v)*16; + break; + case 0x04: /* IRQ clear / mask and Timer enable */ + if(v&0x80) + { /* IRQ flag clear */ + OPL_STATUS_RESET(OPL,0x7f); + } + else + { /* set IRQ mask ,timer enable*/ + UINT8 st1 = v&1; + UINT8 st2 = (v>>1)&1; + /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */ + OPL_STATUS_RESET(OPL,v&0x78); + OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01); + /* timer 2 */ + if(OPL->st[1] != st2) + { + double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0; + OPL->st[1] = st2; + if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval); + } + /* timer 1 */ + if(OPL->st[0] != st1) + { + double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0; + OPL->st[0] = st1; + if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval); + } + } + break; +#if BUILD_Y8950 + case 0x06: /* Key Board OUT */ + if(OPL->type&OPL_TYPE_KEYBOARD) + { + if(OPL->keyboardhandler_w) + OPL->keyboardhandler_w(OPL->keyboard_param,v); + else + logerror("OPL:write unmapped KEYBOARD port\n"); + } + break; + case 0x07: /* DELTA-T controll : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */ + if(OPL->type&OPL_TYPE_ADPCM) + YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v); + break; + case 0x08: /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */ + OPL->mode = v; + v&=0x1f; /* for DELTA-T unit */ + case 0x09: /* START ADD */ + case 0x0a: + case 0x0b: /* STOP ADD */ + case 0x0c: + case 0x0d: /* PRESCALE */ + case 0x0e: + case 0x0f: /* ADPCM data */ + case 0x10: /* DELTA-N */ + case 0x11: /* DELTA-N */ + case 0x12: /* EG-CTRL */ + if(OPL->type&OPL_TYPE_ADPCM) + YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v); + break; +#if 0 + case 0x15: /* DAC data */ + case 0x16: + case 0x17: /* SHIFT */ + break; + case 0x18: /* I/O CTRL (Direction) */ + if(OPL->type&OPL_TYPE_IO) + OPL->portDirection = v&0x0f; + break; + case 0x19: /* I/O DATA */ + if(OPL->type&OPL_TYPE_IO) + { + OPL->portLatch = v; + if(OPL->porthandler_w) + OPL->porthandler_w(OPL->port_param,v&OPL->portDirection); + } + break; + case 0x1a: /* PCM data */ + break; +#endif +#endif + } + break; + case 0x20: /* am ON, vib ON, ksr, eg_type, mul */ + slot = slot_array[r&0x1f]; + if(slot < 0) return; + set_mul(OPL,slot,v); + break; + case 0x40: + slot = slot_array[r&0x1f]; + if(slot < 0) return; + set_ksl_tl(OPL,slot,v); + break; + case 0x60: + slot = slot_array[r&0x1f]; + if(slot < 0) return; + set_ar_dr(OPL,slot,v); + break; + case 0x80: + slot = slot_array[r&0x1f]; + if(slot < 0) return; + set_sl_rr(OPL,slot,v); + break; + case 0xa0: + if (r == 0xbd) /* am depth, vibrato depth, r,bd,sd,tom,tc,hh */ + { + OPL->lfo_am_depth = v & 0x80; + OPL->lfo_pm_depth_range = (v&0x40) ? 8 : 0; + + OPL->rhythm = v&0x3f; + + if(OPL->rhythm&0x20) + { + /* BD key on/off */ + if(v&0x10) + { + FM_KEYON (&OPL->P_CH[6].SLOT[SLOT1], 2); + FM_KEYON (&OPL->P_CH[6].SLOT[SLOT2], 2); + } + else + { + FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1],~2); + FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2],~2); + } + /* HH key on/off */ + if(v&0x01) FM_KEYON (&OPL->P_CH[7].SLOT[SLOT1], 2); + else FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1],~2); + /* SD key on/off */ + if(v&0x08) FM_KEYON (&OPL->P_CH[7].SLOT[SLOT2], 2); + else FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2],~2); + /* TOM key on/off */ + if(v&0x04) FM_KEYON (&OPL->P_CH[8].SLOT[SLOT1], 2); + else FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1],~2); + /* TOP-CY key on/off */ + if(v&0x02) FM_KEYON (&OPL->P_CH[8].SLOT[SLOT2], 2); + else FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2],~2); + } + else + { + /* BD key off */ + FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1],~2); + FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2],~2); + /* HH key off */ + FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1],~2); + /* SD key off */ + FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2],~2); + /* TOM key off */ + FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1],~2); + /* TOP-CY off */ + FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2],~2); + } + return; + } + /* keyon,block,fnum */ + if( (r&0x0f) > 8) return; + CH = &OPL->P_CH[r&0x0f]; + if(!(r&0x10)) + { /* a0-a8 */ + block_fnum = (CH->block_fnum&0x1f00) | v; + } + else + { /* b0-b8 */ + block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff); + + if(v&0x20) + { + FM_KEYON (&CH->SLOT[SLOT1], 1); + FM_KEYON (&CH->SLOT[SLOT2], 1); + } + else + { + FM_KEYOFF(&CH->SLOT[SLOT1],~1); + FM_KEYOFF(&CH->SLOT[SLOT2],~1); + } + } + /* update */ + if(CH->block_fnum != block_fnum) + { + UINT8 block = block_fnum >> 10; + + CH->block_fnum = block_fnum; + + CH->ksl_base = ksl_tab[block_fnum>>6]; + CH->fc = OPL->fn_tab[block_fnum&0x03ff] >> (7-block); + + /* BLK 2,1,0 bits -> bits 3,2,1 of kcode */ + CH->kcode = (CH->block_fnum&0x1c00)>>9; + + /* the info below is actually opposite to what is stated in the Manuals (verifed on real YM3812) */ + /* if notesel == 0 -> lsb of kcode is bit 10 (MSB) of fnum */ + /* if notesel == 1 -> lsb of kcode is bit 9 (MSB-1) of fnum */ + if (OPL->mode&0x40) + CH->kcode |= (CH->block_fnum&0x100)>>8; /* notesel == 1 */ + else + CH->kcode |= (CH->block_fnum&0x200)>>9; /* notesel == 0 */ + + /* refresh Total Level in both SLOTs of this channel */ + CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl); + CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl); + + /* refresh frequency counter in both SLOTs of this channel */ + CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); + CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); + } + break; + case 0xc0: + /* FB,C */ + if( (r&0x0f) > 8) return; + CH = &OPL->P_CH[r&0x0f]; + CH->SLOT[SLOT1].FB = (v>>1)&7 ? ((v>>1)&7) + 7 : 0; + CH->SLOT[SLOT1].CON = v&1; + CH->SLOT[SLOT1].connect1 = CH->SLOT[SLOT1].CON ? &output[0] : &phase_modulation; + break; + case 0xe0: /* waveform select */ + /* simply ignore write to the waveform select register if selecting not enabled in test register */ + if(OPL->wavesel) + { + slot = slot_array[r&0x1f]; + if(slot < 0) return; + CH = &OPL->P_CH[slot/2]; + + CH->SLOT[slot&1].wavetable = (v&0x03)*SIN_LEN; + } + break; + } +} + +#ifdef LOG_CYM_FILE +static void cymfile_callback (int n) +{ + if (cymfile) + { + fputc( (unsigned char)0, cymfile ); + } +} +#endif + +/* lock/unlock for common table */ +static int OPL_LockTable(void) +{ + num_lock++; + if(num_lock>1) return 0; + + /* first time */ + + cur_chip = NULL; + /* allocate total level table (128kb space) */ + if( !init_tables() ) + { + num_lock--; + return -1; + } + +#ifdef LOG_CYM_FILE + cymfile = fopen("3812_.cym","wb"); + if (cymfile) + timer_pulse ( TIME_IN_HZ(110), 0, cymfile_callback); /*110 Hz pulse timer*/ + else + logerror("Could not create file 3812_.cym\n"); +#endif + + return 0; +} + +static void OPL_UnLockTable(void) +{ + if(num_lock) num_lock--; + if(num_lock) return; + + /* last time */ + + cur_chip = NULL; + OPLCloseTable(); + +#ifdef LOG_CYM_FILE + fclose (cymfile); + cymfile = NULL; +#endif + +} + +static void OPLResetChip(FM_OPL *OPL) +{ + int c,s; + int i; + + OPL->eg_timer = 0; + OPL->eg_cnt = 0; + + OPL->noise_rng = 1; /* noise shift register */ + OPL->mode = 0; /* normal mode */ + OPL_STATUS_RESET(OPL,0x7f); + + /* reset with register write */ + OPLWriteReg(OPL,0x01,0); /* wavesel disable */ + OPLWriteReg(OPL,0x02,0); /* Timer1 */ + OPLWriteReg(OPL,0x03,0); /* Timer2 */ + OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */ + for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0); + + /* reset operator parameters */ + for( c = 0 ; c < 9 ; c++ ) + { + OPL_CH *CH = &OPL->P_CH[c]; + for(s = 0 ; s < 2 ; s++ ) + { + /* wave table */ + CH->SLOT[s].wavetable = 0; + CH->SLOT[s].state = EG_OFF; + CH->SLOT[s].volume = MAX_ATT_INDEX; + } + } +#if BUILD_Y8950 + if(OPL->type&OPL_TYPE_ADPCM) + { + YM_DELTAT *DELTAT = OPL->deltat; + + DELTAT->freqbase = OPL->freqbase; + DELTAT->output_pointer = &output_deltat[0]; + DELTAT->portshift = 5; + DELTAT->output_range = 1<<23; + YM_DELTAT_ADPCM_Reset(DELTAT,0); + } +#endif +} + +/* Create one of virtual YM3812 */ +/* 'clock' is chip clock in Hz */ +/* 'rate' is sampling rate */ +static FM_OPL *OPLCreate(int type, int clock, int rate) +{ + char *ptr; + FM_OPL *OPL; + int state_size; + + if (OPL_LockTable() ==-1) return NULL; + + /* calculate OPL state size */ + state_size = sizeof(FM_OPL); + +#if BUILD_Y8950 + if (type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT); +#endif + + /* allocate memory block */ + ptr = malloc(state_size); + + if (ptr==NULL) + return NULL; + + /* clear */ + memset(ptr,0,state_size); + + OPL = (FM_OPL *)ptr; + + ptr += sizeof(FM_OPL); + +#if BUILD_Y8950 + if (type&OPL_TYPE_ADPCM) + OPL->deltat = (YM_DELTAT *)ptr; + ptr += sizeof(YM_DELTAT); +#endif + + OPL->type = type; + OPL->clock = clock; + OPL->rate = rate; + + /* init global tables */ + OPL_initalize(OPL); + + /* reset chip */ + OPLResetChip(OPL); + return OPL; +} + +/* Destroy one of virtual YM3812 */ +static void OPLDestroy(FM_OPL *OPL) +{ + OPL_UnLockTable(); + free(OPL); +} + +/* Option handlers */ + +static void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset) +{ + OPL->TimerHandler = TimerHandler; + OPL->TimerParam = channelOffset; +} +static void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param) +{ + OPL->IRQHandler = IRQHandler; + OPL->IRQParam = param; +} +static void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param) +{ + OPL->UpdateHandler = UpdateHandler; + OPL->UpdateParam = param; +} + +/* YM3812 I/O interface */ +static int OPLWrite(FM_OPL *OPL,int a,int v) +{ + if( !(a&1) ) + { /* address port */ + OPL->address = v & 0xff; + } + else + { /* data port */ + if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0); + OPLWriteReg(OPL,OPL->address,v); + } + return OPL->status>>7; +} + +static unsigned char OPLRead(FM_OPL *OPL,int a) +{ + if( !(a&1) ) + { + /* status port */ + return OPL->status & (OPL->statusmask|0x80); + } + +#if BUILD_Y8950 + /* data port */ + switch(OPL->address) + { + case 0x05: /* KeyBoard IN */ + if(OPL->type&OPL_TYPE_KEYBOARD) + { + if(OPL->keyboardhandler_r) + return OPL->keyboardhandler_r(OPL->keyboard_param); + else + logerror("OPL:read unmapped KEYBOARD port\n"); + } + return 0; +#if 0 + case 0x0f: /* ADPCM-DATA */ + return 0; +#endif + case 0x19: /* I/O DATA */ + if(OPL->type&OPL_TYPE_IO) + { + if(OPL->porthandler_r) + return OPL->porthandler_r(OPL->port_param); + else + logerror("OPL:read unmapped I/O port\n"); + } + return 0; + case 0x1a: /* PCM-DATA */ + return 0; + } +#endif + + return 0xff; +} + +/* CSM Key Controll */ +inline void CSMKeyControll(OPL_CH *CH) +{ + FM_KEYON (&CH->SLOT[SLOT1], 4); + FM_KEYON (&CH->SLOT[SLOT2], 4); + + /* The key off should happen exactly one sample later - not implemented correctly yet */ + + FM_KEYOFF(&CH->SLOT[SLOT1], ~4); + FM_KEYOFF(&CH->SLOT[SLOT2], ~4); +} + + +static int OPLTimerOver(FM_OPL *OPL,int c) +{ + if( c ) + { /* Timer B */ + OPL_STATUS_SET(OPL,0x20); + } + else + { /* Timer A */ + OPL_STATUS_SET(OPL,0x40); + /* CSM mode key,TL controll */ + if( OPL->mode & 0x80 ) + { /* CSM mode total level latch and auto key on */ + int ch; + if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0); + for(ch=0; ch<9; ch++) + CSMKeyControll( &OPL->P_CH[ch] ); + } + } + /* reload timer */ + if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase); + return OPL->status>>7; +} + + +#define MAX_OPL_CHIPS 2 + + +#if (BUILD_YM3812) + +static FM_OPL *OPL_YM3812[MAX_OPL_CHIPS]; /* array of pointers to the YM3812's */ +static int YM3812NumChips = 0; /* number of chips */ + +int YM3812Init(int num, int clock, int rate) +{ + int i; + + if (YM3812NumChips) + return -1; /* duplicate init. */ + + YM3812NumChips = num; + + for (i = 0;i < YM3812NumChips; i++) + { + /* emulator create */ + OPL_YM3812[i] = OPLCreate(OPL_TYPE_YM3812,clock,rate); + if(OPL_YM3812[i] == NULL) + { + /* it's really bad - we run out of memeory */ + YM3812NumChips = 0; + return -1; + } + } + + return 0; +} + +void YM3812Shutdown(void) +{ + int i; + + for (i = 0;i < YM3812NumChips; i++) + { + /* emulator shutdown */ + OPLDestroy(OPL_YM3812[i]); + OPL_YM3812[i] = NULL; + } + YM3812NumChips = 0; +} +void YM3812ResetChip(int which) +{ + OPLResetChip(OPL_YM3812[which]); +} + +int YM3812Write(int which, int a, int v) +{ + return OPLWrite(OPL_YM3812[which], a, v); +} + +unsigned char YM3812Read(int which, int a) +{ + /* YM3812 always returns bit2 and bit1 in HIGH state */ + return OPLRead(OPL_YM3812[which], a) | 0x06 ; +} +int YM3812TimerOver(int which, int c) +{ + return OPLTimerOver(OPL_YM3812[which], c); +} + +void YM3812SetTimerHandler(int which, OPL_TIMERHANDLER TimerHandler, int channelOffset) +{ + OPLSetTimerHandler(OPL_YM3812[which], TimerHandler, channelOffset); +} +void YM3812SetIRQHandler(int which,OPL_IRQHANDLER IRQHandler,int param) +{ + OPLSetIRQHandler(OPL_YM3812[which], IRQHandler, param); +} +void YM3812SetUpdateHandler(int which,OPL_UPDATEHANDLER UpdateHandler,int param) +{ + OPLSetUpdateHandler(OPL_YM3812[which], UpdateHandler, param); +} + + +/* +** Generate samples for one of the YM3812's +** +** 'which' is the virtual YM3812 number +** '*buffer' is the output buffer pointer +** 'length' is the number of samples that should be generated +*/ +void YM3812UpdateOne(int which, INT16 *buffer, int length) +{ + FM_OPL *OPL = OPL_YM3812[which]; + UINT8 rhythm = OPL->rhythm&0x20; + OPLSAMPLE *buf = buffer; + int i; + + if( (void *)OPL != cur_chip ){ + cur_chip = (void *)OPL; + /* rhythm slots */ + SLOT7_1 = &OPL->P_CH[7].SLOT[SLOT1]; + SLOT7_2 = &OPL->P_CH[7].SLOT[SLOT2]; + SLOT8_1 = &OPL->P_CH[8].SLOT[SLOT1]; + SLOT8_2 = &OPL->P_CH[8].SLOT[SLOT2]; + } + for( i=0; i < length ; i++ ) + { + int lt; + + output[0] = 0; + + advance_lfo(OPL); + + /* FM part */ + OPL_CALC_CH(&OPL->P_CH[0]); + OPL_CALC_CH(&OPL->P_CH[1]); + OPL_CALC_CH(&OPL->P_CH[2]); + OPL_CALC_CH(&OPL->P_CH[3]); + OPL_CALC_CH(&OPL->P_CH[4]); + OPL_CALC_CH(&OPL->P_CH[5]); + + if(!rhythm) + { + OPL_CALC_CH(&OPL->P_CH[6]); + OPL_CALC_CH(&OPL->P_CH[7]); + OPL_CALC_CH(&OPL->P_CH[8]); + } + else /* Rhythm part */ + { + OPL_CALC_RH(&OPL->P_CH[0], (OPL->noise_rng>>0)&1 ); + } + + lt = output[0]; + + lt >>= FINAL_SH; + + /* limit check */ + lt = limit( lt , MAXOUT, MINOUT ); + + #ifdef SAVE_SAMPLE + SAVE_ALL_CHANNELS + #endif + + /* store to sound buffer */ + buf[i] = lt; + + advance(OPL); + } + +} +#endif /* BUILD_YM3812 */ + + + +#if (BUILD_YM3526) + +static FM_OPL *OPL_YM3526[MAX_OPL_CHIPS]; /* array of pointers to the YM3526's */ +static int YM3526NumChips = 0; /* number of chips */ + +int YM3526Init(int num, int clock, int rate) +{ + int i; + + if (YM3526NumChips) + return -1; /* duplicate init. */ + + YM3526NumChips = num; + + for (i = 0;i < YM3526NumChips; i++) + { + /* emulator create */ + OPL_YM3526[i] = OPLCreate(OPL_TYPE_YM3526,clock,rate); + if(OPL_YM3526[i] == NULL) + { + /* it's really bad - we run out of memeory */ + YM3526NumChips = 0; + return -1; + } + } + + return 0; +} + +void YM3526Shutdown(void) +{ + int i; + + for (i = 0;i < YM3526NumChips; i++) + { + /* emulator shutdown */ + OPLDestroy(OPL_YM3526[i]); + OPL_YM3526[i] = NULL; + } + YM3526NumChips = 0; +} +void YM3526ResetChip(int which) +{ + OPLResetChip(OPL_YM3526[which]); +} + +int YM3526Write(int which, int a, int v) +{ + return OPLWrite(OPL_YM3526[which], a, v); +} + +unsigned char YM3526Read(int which, int a) +{ + return OPLRead(OPL_YM3526[which], a); +} +int YM3526TimerOver(int which, int c) +{ + return OPLTimerOver(OPL_YM3526[which], c); +} + +void YM3526SetTimerHandler(int which, OPL_TIMERHANDLER TimerHandler, int channelOffset) +{ + OPLSetTimerHandler(OPL_YM3526[which], TimerHandler, channelOffset); +} +void YM3526SetIRQHandler(int which,OPL_IRQHANDLER IRQHandler,int param) +{ + OPLSetIRQHandler(OPL_YM3526[which], IRQHandler, param); +} +void YM3526SetUpdateHandler(int which,OPL_UPDATEHANDLER UpdateHandler,int param) +{ + OPLSetUpdateHandler(OPL_YM3526[which], UpdateHandler, param); +} + + +/* +** Generate samples for one of the YM3526's +** +** 'which' is the virtual YM3526 number +** '*buffer' is the output buffer pointer +** 'length' is the number of samples that should be generated +*/ +void YM3526UpdateOne(int which, INT16 *buffer, int length) +{ + FM_OPL *OPL = OPL_YM3526[which]; + UINT8 rhythm = OPL->rhythm&0x20; + OPLSAMPLE *buf = buffer; + int i; + + if( (void *)OPL != cur_chip ){ + cur_chip = (void *)OPL; + /* rhythm slots */ + SLOT7_1 = &OPL->P_CH[7].SLOT[SLOT1]; + SLOT7_2 = &OPL->P_CH[7].SLOT[SLOT2]; + SLOT8_1 = &OPL->P_CH[8].SLOT[SLOT1]; + SLOT8_2 = &OPL->P_CH[8].SLOT[SLOT2]; + } + for( i=0; i < length ; i++ ) + { + int lt; + + output[0] = 0; + + advance_lfo(OPL); + + /* FM part */ + OPL_CALC_CH(&OPL->P_CH[0]); + OPL_CALC_CH(&OPL->P_CH[1]); + OPL_CALC_CH(&OPL->P_CH[2]); + OPL_CALC_CH(&OPL->P_CH[3]); + OPL_CALC_CH(&OPL->P_CH[4]); + OPL_CALC_CH(&OPL->P_CH[5]); + + if(!rhythm) + { + OPL_CALC_CH(&OPL->P_CH[6]); + OPL_CALC_CH(&OPL->P_CH[7]); + OPL_CALC_CH(&OPL->P_CH[8]); + } + else /* Rhythm part */ + { + OPL_CALC_RH(&OPL->P_CH[0], (OPL->noise_rng>>0)&1 ); + } + + lt = output[0]; + + lt >>= FINAL_SH; + + /* limit check */ + lt = limit( lt , MAXOUT, MINOUT ); + + #ifdef SAVE_SAMPLE + SAVE_ALL_CHANNELS + #endif + + /* store to sound buffer */ + buf[i] = lt; + + advance(OPL); + } + +} +#endif /* BUILD_YM3526 */ + + + + +#if BUILD_Y8950 + +static FM_OPL *OPL_Y8950[MAX_OPL_CHIPS]; /* array of pointers to the Y8950's */ +static int Y8950NumChips = 0; /* number of chips */ + +int Y8950Init(int num, int clock, int rate) +{ + int i; + + if (Y8950NumChips) + return -1; /* duplicate init. */ + + Y8950NumChips = num; + + for (i = 0;i < Y8950NumChips; i++) + { + /* emulator create */ + OPL_Y8950[i] = OPLCreate(OPL_TYPE_Y8950,clock,rate); + if(OPL_Y8950[i] == NULL) + { + /* it's really bad - we run out of memeory */ + Y8950NumChips = 0; + return -1; + } + } + + return 0; +} + +void Y8950Shutdown(void) +{ + int i; + + for (i = 0;i < Y8950NumChips; i++) + { + /* emulator shutdown */ + OPLDestroy(OPL_Y8950[i]); + OPL_Y8950[i] = NULL; + } + Y8950NumChips = 0; +} +void Y8950ResetChip(int which) +{ + OPLResetChip(OPL_Y8950[which]); +} + +int Y8950Write(int which, int a, int v) +{ + return OPLWrite(OPL_Y8950[which], a, v); +} + +unsigned char Y8950Read(int which, int a) +{ + return OPLRead(OPL_Y8950[which], a); +} +int Y8950TimerOver(int which, int c) +{ + return OPLTimerOver(OPL_Y8950[which], c); +} + +void Y8950SetTimerHandler(int which, OPL_TIMERHANDLER TimerHandler, int channelOffset) +{ + OPLSetTimerHandler(OPL_Y8950[which], TimerHandler, channelOffset); +} +void Y8950SetIRQHandler(int which,OPL_IRQHANDLER IRQHandler,int param) +{ + OPLSetIRQHandler(OPL_Y8950[which], IRQHandler, param); +} +void Y8950SetUpdateHandler(int which,OPL_UPDATEHANDLER UpdateHandler,int param) +{ + OPLSetUpdateHandler(OPL_Y8950[which], UpdateHandler, param); +} + +void Y8950SetDeltaTMemory(int which, void * deltat_rom, int deltat_rom_size ) +{ + FM_OPL *OPL = OPL_Y8950[which]; + OPL->deltat->memory = (UINT8 *)(deltat_rom); + OPL->deltat->memory_size = deltat_rom_size; +} + +/* +** Generate samples for one of the Y8950's +** +** 'which' is the virtual Y8950 number +** '*buffer' is the output buffer pointer +** 'length' is the number of samples that should be generated +*/ +void Y8950UpdateOne(int which, INT16 *buffer, int length) +{ + int i; + FM_OPL *OPL = OPL_Y8950[which]; + UINT8 rhythm = OPL->rhythm&0x20; + YM_DELTAT *DELTAT = OPL->deltat; + OPLSAMPLE *buf = buffer; + + /* setup DELTA-T unit */ + YM_DELTAT_DECODE_PRESET(DELTAT); + + if( (void *)OPL != cur_chip ){ + cur_chip = (void *)OPL; + /* rhythm slots */ + SLOT7_1 = &OPL->P_CH[7].SLOT[SLOT1]; + SLOT7_2 = &OPL->P_CH[7].SLOT[SLOT2]; + SLOT8_1 = &OPL->P_CH[8].SLOT[SLOT1]; + SLOT8_2 = &OPL->P_CH[8].SLOT[SLOT2]; + + } + for( i=0; i < length ; i++ ) + { + int lt; + + output[0] = 0; + output_deltat[0] = 0; + + advance_lfo(OPL); + + /* deltaT ADPCM */ + if( DELTAT->portstate ) + YM_DELTAT_ADPCM_CALC(DELTAT); + + /* FM part */ + OPL_CALC_CH(&OPL->P_CH[0]); + OPL_CALC_CH(&OPL->P_CH[1]); + OPL_CALC_CH(&OPL->P_CH[2]); + OPL_CALC_CH(&OPL->P_CH[3]); + OPL_CALC_CH(&OPL->P_CH[4]); + OPL_CALC_CH(&OPL->P_CH[5]); + + if(!rhythm) + { + OPL_CALC_CH(&OPL->P_CH[6]); + OPL_CALC_CH(&OPL->P_CH[7]); + OPL_CALC_CH(&OPL->P_CH[8]); + } + else /* Rhythm part */ + { + OPL_CALC_RH(&OPL->P_CH[0], (OPL->noise_rng>>0)&1 ); + } + + lt = output[0] + (output_deltat[0]>>11); + + lt >>= FINAL_SH; + + /* limit check */ + lt = limit( lt , MAXOUT, MINOUT ); + + #ifdef SAVE_SAMPLE + SAVE_ALL_CHANNELS + #endif + + /* store to sound buffer */ + buf[i] = lt; + + advance(OPL); + } + + /* deltaT START flag */ + if( !DELTAT->portstate ) + OPL->status &= 0xfe; + + if( DELTAT->eos ) //AT: set bit 4 of OPL status register on EOS + { + DELTAT->eos = 0; + OPL->status |= 0x10; + } +} + +void Y8950SetPortHandler(int which,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param) +{ + FM_OPL *OPL = OPL_Y8950[which]; + OPL->porthandler_w = PortHandler_w; + OPL->porthandler_r = PortHandler_r; + OPL->port_param = param; +} + +void Y8950SetKeyboardHandler(int which,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param) +{ + FM_OPL *OPL = OPL_Y8950[which]; + OPL->keyboardhandler_w = KeyboardHandler_w; + OPL->keyboardhandler_r = KeyboardHandler_r; + OPL->keyboard_param = param; +} + +#endif + --- src/dosext/sound/fmopl.h Thu Jan 1 03:00:00 1970 +++ src/dosext/sound/fmopl.h Mon Oct 7 23:02:49 2002 @@ -0,0 +1,113 @@ +#ifndef __FMOPL_H_ +#define __FMOPL_H_ + +#define HAS_YM3812 1 + +/* --- select emulation chips --- */ +#define BUILD_YM3812 (HAS_YM3812) +#define BUILD_YM3526 (HAS_YM3526) +#define BUILD_Y8950 (HAS_Y8950) + +/* select output bits size of output : 8 or 16 */ +#define OPL_SAMPLE_BITS 16 + +/* compiler dependence */ +#ifndef OSD_CPU_H +#define OSD_CPU_H +typedef unsigned char UINT8; /* unsigned 8bit */ +typedef unsigned short UINT16; /* unsigned 16bit */ +typedef unsigned int UINT32; /* unsigned 32bit */ +typedef signed char INT8; /* signed 8bit */ +typedef signed short INT16; /* signed 16bit */ +typedef signed int INT32; /* signed 32bit */ +#endif + +#if (OPL_SAMPLE_BITS==16) +typedef INT16 OPLSAMPLE; +#endif +#if (OPL_SAMPLE_BITS==8) +typedef INT8 OPLSAMPLE; +#endif + + +typedef void (*OPL_TIMERHANDLER)(int channel,double interval_Sec); +typedef void (*OPL_IRQHANDLER)(int param,int irq); +typedef void (*OPL_UPDATEHANDLER)(int param,int min_interval_us); +typedef void (*OPL_PORTHANDLER_W)(int param,unsigned char data); +typedef unsigned char (*OPL_PORTHANDLER_R)(int param); + + +#if BUILD_YM3812 + +int YM3812Init(int num, int clock, int rate); +void YM3812Shutdown(void); +void YM3812ResetChip(int which); +int YM3812Write(int which, int a, int v); +unsigned char YM3812Read(int which, int a); +int YM3812TimerOver(int which, int c); +void YM3812UpdateOne(int which, INT16 *buffer, int length); + +void YM3812SetTimerHandler(int which, OPL_TIMERHANDLER TimerHandler, int channelOffset); +void YM3812SetIRQHandler(int which, OPL_IRQHANDLER IRQHandler, int param); +void YM3812SetUpdateHandler(int which, OPL_UPDATEHANDLER UpdateHandler, int param); + +#endif + + +#if BUILD_YM3526 + +/* +** Initialize YM3526 emulator(s). +** +** 'num' is the number of virtual YM3526's to allocate +** 'clock' is the chip clock in Hz +** 'rate' is sampling rate +*/ +int YM3526Init(int num, int clock, int rate); +/* shutdown the YM3526 emulators*/ +void YM3526Shutdown(void); +void YM3526ResetChip(int which); +int YM3526Write(int which, int a, int v); +unsigned char YM3526Read(int which, int a); +int YM3526TimerOver(int which, int c); +/* +** Generate samples for one of the YM3526's +** +** 'which' is the virtual YM3526 number +** '*buffer' is the output buffer pointer +** 'length' is the number of samples that should be generated +*/ +void YM3526UpdateOne(int which, INT16 *buffer, int length); + +void YM3526SetTimerHandler(int which, OPL_TIMERHANDLER TimerHandler, int channelOffset); +void YM3526SetIRQHandler(int which, OPL_IRQHANDLER IRQHandler, int param); +void YM3526SetUpdateHandler(int which, OPL_UPDATEHANDLER UpdateHandler, int param); + +#endif + + +#if BUILD_Y8950 + +#include "ymdeltat.h" + +/* Y8950 port handlers */ +void Y8950SetPortHandler(int which, OPL_PORTHANDLER_W PortHandler_w, OPL_PORTHANDLER_R PortHandler_r, int param); +void Y8950SetKeyboardHandler(int which, OPL_PORTHANDLER_W KeyboardHandler_w, OPL_PORTHANDLER_R KeyboardHandler_r, int param); +void Y8950SetDeltaTMemory(int which, void * deltat_rom, int deltat_rom_size ); + +int Y8950Init (int num, int clock, int rate); +void Y8950Shutdown (void); +void Y8950ResetChip (int which); +int Y8950Write (int which, int a, int v); +unsigned char Y8950Read (int which, int a); +int Y8950TimerOver (int which, int c); +void Y8950UpdateOne (int which, INT16 *buffer, int length); + +void Y8950SetTimerHandler (int which, OPL_TIMERHANDLER TimerHandler, int channelOffset); +void Y8950SetIRQHandler (int which, OPL_IRQHANDLER IRQHandler, int param); +void Y8950SetUpdateHandler (int which, OPL_UPDATEHANDLER UpdateHandler, int param); + +#endif + + +#endif